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In principle, two views should be enough to triangulate a point. However, any

imperfections in 2D keypoints or calibration leads to poor reconstructions.

There are no constraints for reconstructing the points and they could end up
arbitrarily anywhere.

Large multi-view rigs (shown below) enables the usage of accurate camera
calibration and multiple views to minimize error on each point. However, that

could lead to immense cost and complexity.

. The 3D structure, S is drawn from a statistical shape distribution using neural shape
Approach' TWo views can be enough' priors and projected to 2 views using the Orthographic-N-Point (OnP).
« Parameters of the shape distribution are adapted by minimizing the predicted and

groundtruth (input) 2D projections.

Multiple views + Two uncalibrated views

Monkey dataset
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X 2 3 4 8 16 32 48 2-views (ours) | 68.63%
Number of Cameras for Inference 3-views (ours) 84.63%

* QOur method with 3 views is comparable to 16+ views that
utilizes iterative multi-view triangulation (TRNG).

Human dataset

S1, S5, S6, S7, S8

Extrinsics Noise Intrinsics Noise 2D keypoints Noise
c0=01]0=05|0=09|06=01|0c=05|0=09 | 0c=15|0=25|0=35
TRNG 65.49 131.66 | 145.94 | 69.57 188.63 | 234.47 | 70.08 | 114.06 | 154.41
2-Views (ours) 30.53 54.22 65.74 | 77.82

Robustness to camera calibration and 2D annotations noise for Human 3.6M dataset. Values are in mm.
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Our method is robust to both
2D keypoints and calibration
noise.
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« Ontop of 3D structure, we
also return camera matrix.

« This should enable data
collection with imperfect/no
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accur?:)e ‘f{?mera + neural shape prior « S, R*and W are recovered by constraining shapes from a shared neural model.
calibration
Autoencoder based approach
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Large multi-view rig uses multiple  Our approach: Instead of more
observations (with outlier cameras, we add a neural prior to
rejection) to minimize error for constrain the shape (the set of 3D
each point. points) to lie on a manifold. Je

(Still, it does not enforce any
constraints on the overall shape)

This allows us to combine multiple
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calibration.

Conclusion

observations even though the object is
deforming, while only leveraging only

two physical views at any observation. Motivated by hierarchical sparse coding, network f, extracts block sparse codes V.

« The bottleneck (RF layer) extracts each block sparse code into camera matrix and
unrotated vector sparse code.

https://sites.google.com/view/high-fidelity-3d-neural-prior

» Codes are pooled and fed into the decoderfd to generate canonicalized 3D structure S .

This work could open doors for wide-scale data collection
setups, making the expensive and complex multi-view rigs
obsolete.

 Limitation: Requires multiple non-rigid atemporal views to
enforce the proposed neural shape prior during
optimization.



