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In principle, two views should be enough to triangulate a point. However, any 
imperfections in 2D keypoints or calibration leads to poor reconstructions. 

There are no constraints for reconstructing the points and they could end up 
arbitrarily anywhere. 

Large multi-view rigs (shown below) enables the usage of accurate camera 
calibration and multiple views to minimize error on each point. However, that 
could lead to immense cost and complexity.

Method
Two views are not enough for triangulation

Triangulation from two views Resulting two-view reconstructions on monkeys, hands, bodies

Overview

Approach: Two views can be enough!

Multiple views + 
accurate camera 

calibration

Two uncalibrated views 
+ neural shape prior

Large multi-view rig uses multiple 
observations (with outlier 
rejection) to minimize error for 
each point.
(Still, it does not enforce any 
constraints on the overall shape)

Our approach: Instead of more 
cameras, we add a neural prior to 
constrain the shape (the set of 3D 
points) to lie on a manifold.

This allows us to combine multiple 
observations even though the object is 
deforming, while only leveraging only 
two physical views at any observation.
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• The 3D structure,        is drawn from a statistical shape distribution using neural shape 
priors and projected to 2 views using the Orthographic-N-Point (OnP).

• Parameters of the shape distribution are adapted by minimizing the predicted and 
groundtruth (input) 2D projections.

• ,       , and are recovered by constraining shapes from a shared neural model.
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Results
Robustness to calibration and 

noise on 2D keypoints

Monkey dataset
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Method Batch#7 Batch#9 Batch#9a Batch#9b Batch#10 Batch#11

TRNG 21.21 24.32 30.67 24.50 26.10 22.77
MV NRSfM 8.36 8.25 9.12 11.52 8.203 8.17

Table 1: PA-MPJPE error values for Monkey body dataset shows substantial improvement over the baseline rigid multi-view
triangulation approach while using only two views over noisy 2D keypoints. PA-MPJPE values are in cm.

S1, S5, S6, S7, S8
Extrinsics Noise Intrinsics Noise 2D keypoints Noise

� = 0.1 � = 0.5 � = 0.9 � = 0.1 � = 0.5 � = 0.9 � = 15 � = 25 � = 35
TRNG 65.49 131.66 145.94 69.57 188.63 234.47 70.08 114.06 154.41
2-Views (ours) 30.53 54.22 65.74 77.82

Table 2: Robustness to camera calibration and 2D annotations noise for Human 3.6M dataset.

Method PCK
2 Views [4] 1.2%
4 Views [4] 59%
8 Views [4] 80%

16 Views [4] 82%
32 Views [4] 87%
48 Views [4] 95%

2-views (ours) 68.63%
3-views (ours) 84.63%

Table 3: Percentage of Correct Keypoint (PCK) % for
OpenMonkeyStudio dataset. Following [4], the threshold
for considering a keypoint to be correct is set at 10cm.

Figure 5: Qualitative results on Human 3.6M dataset with
� = [0.5, 0.5, 25] as intrinsics, extrinsics, and 2D keypoints
Gaussian noise, respectively.

pability of our approach, we include these approaches in our
evaluation, shown in Tab. 4. Furthermore, we also compare
against recent monocular unsupervised 3D reconstruction
methods. We leverage the processed datasets by Dovotny
et al. [35] as the detected 2D keypoints for a fair evalua-
tion. We use the evaluation split of H3.6M dataset for this
comparison. We find that our approach clearly outperforms
all other unsupervised approaches, and is on-par with many
supervised methods.

Method Detected 2D GT 2D
Iskakov et al. [18] 20.8 -
Remelli et al. [39] 30.2 -
Kadkhodamohammadi et al. [20] 49.1 -
Tome et al. [45] 52.8 -
Pavlakos et al. [38] 56.9 -
Multi-view Martinez [33] 57.0 -
Rhodin et al. [40] 51.6 -
Kocabas et al [24] 45.04 -
Kocabas et al. (SS w/o R) [24] 70.67 -
PRN [37] 124.5 86.4
RepNet [46] 65.1 38.2
Iqbal et al. [17] 69.1 -
Pose-GAN [28] 173.2 130.9
Deep NRSfM [26] - 104.2
C3DPO [35] 153.0 95.6
MV NRSfM (Ours) 45.2 30.2

Table 4: Generalization experiments. Red tint rows have 3D
supervision. Green tint are unsupervised 3D reconstruction
methods. Our method is on par with most 3D supervised
methods, and outperforms all unsupervised methods.

6. Discussion and Conclusion
We propose a multi-view NRSfM architecture that in-

corporates neural shape prior using the recent advances
of modern deep learning methods. We observe that two-
physical views achieve comparable fidelity to complex, ex-
pensive setups that use multi-view triangulation. We also
show the generalization capability of the proposed approach
by generating accurate 3D reconstructions on unseen data.
Although we require two rigid views at any instant of time,
our approach still requires multiple non-rigid atemporal
views to enforce the proposed neural shape prior. Literature
in the domain of neural shape priors is extensive [35, 47]
and new innovations are proposed constantly, and we be-
lieve we could leverage these innovations within our frame-
work as part of future direction.
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• Our method with 3 views is comparable to 16+ views that 
utilizes iterative multi-view triangulation (TRNG).

Human dataset

• Our method is robust to both 
2D keypoints and calibration 
noise.

• On top of 3D structure, we 
also return camera matrix.

• This should enable data 
collection with imperfect/no 
calibration.

Conclusion

• Motivated by hierarchical sparse coding, network       extracts block sparse codes      .

• The bottleneck (RF layer) extracts each block sparse code into camera matrix and 
unrotated vector sparse code.

• Codes are pooled and fed into the decoder       to generate canonicalized 3D structure     .

• This work could open doors for wide-scale data collection 
setups, making the expensive and complex multi-view rigs 
obsolete.

• Limitation: Requires multiple non-rigid atemporal views to 
enforce the proposed neural shape prior during 
optimization.https://sites.google.com/view/high-fidelity-3d-neural-prior

Resulting two-view reconstructions on monkeys, hands, bodies


